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Figure 1. Inhibition of the enzyme with (Z)-3-OPP. Incubations were at 
37 °C in 20OML of 10 mM potassium phosphate buffer, pH 7.4, 1 mM 
MgCI2, 0.1 mM dithiothreitol, 1 MM NaN3, and 0.5 MM IPP with 26 ng 
of prenyltransferase and the indicated concentrations of GPP. Determi­
nations were in duplicate. Concentrations of (Z)-3-OPP: none, 2.5, 5, 10, 
and 20 fiM. 

± 0.2 /uM) suggest that 2-fluorogeranyl pyrophosphate is 
tightly bound by the enzyme. This observation is supported by 
inhibition kinetics, which show that (Z)-3-OPP is a competitive 
inhibitor (see Figure 1) of geranyl pyrophosphate with K1 = 
2.4 ± 0.5 MM. 

In summary, 2-fluorogeranyl pyrophosphate reacts with 
isopentenyl pyrophosphate in the presence of prenyltransferase 
to yield a C(15) fluorine containing homologue. The substrate 
analogue binds specifically to the allylic site, and kinetic be­
havior suggests that the binding is almost as tight as that of the 
natural substrate. Finally, replacing the C(2) hydrogen in the 
geranyl system by fluorine retards the rate of solvolysis, a re­
action known to proceed through a carbonium ion intermedi­
ate, and the Kmax of the prenyltransfer reaction by similar 
amounts.25 We conclude that the head-to-tail coupling reaction 
catalyzed by prenyltransferase proceeds by an ionization-
condensation-elimination mechanism. Experiments are un­
derway in our laboratory to determine the timing of the indi­
vidual steps. 
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Formation of Fused, Spiro, and Metacyclophane Rings 
via Intramolecular Carbanion Attack on 
Arene- Chromium Complexes 

Sir: 

The activating effect of 7r-bonded transition metals in the 
addition of nucleophiles to arene ligands is well established.1 

Combined with mild oxidation of the intermediate ?75-(alkyl-
cyclohexadienyl)chromium tricarbonyl anion,2 this process 
has been shown in simple examples to be an efficient means of 
formal nucleophilic substitution for hydrogen.3 Here we report 
intramolecular reaction of carbanions onto ir-arene ligands 
which provide examples of more complex conversions appro­
priate for organic synthesis, unexpected examples of thermo­
dynamic vs. kinetic control over ring size, and the formation 
of a [3.3]metacyclophane. 

Successful intermolecular additions to ir-benzenechromium 
tricarbonyl have been observed with carbanions stabilized by 
carboalkoxy,3 nitrile,3 sulfur,3 keto,4 and imino4 units, as well 
as a few examples of simple organolithium reagents.3-4 We find 
that ester enolates fail in intramolecular addition to 7r-arene 
ligands,5 while the anion of 1,3-dithiane (and, presumably, 
anions derived from still less acidic carbon acids) cannot be 
generated efficiently by direct proton abstraction in the pres­
ence of a ir-arene unit.6 However, nitrile-stabilized anions, such 
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Table I. Change in Product Composition During Cyclization0 of 
Complex la 

Time, h 

0.5 
0.25 
4.0 
24 

Temp, 
0C 

-78 
0 
0 
0 

%5a* 

72 
37 
25 
3 

%6 

28 
63 
75 
97 

% yield' 
(combined) 

72 
79 
81 
70 

" The reactions were run in THF:HMPA (2:1) with acid quench­
ing.15 h The fraction 5a includes all isomers of 5a and is determined 
by relative GC, areas without all calibration with pure samples of the 
products.' The yield is based on material from short path distillation, 
shown to contain only 5a (and isomers) and 6 by GC and 1HNMR 
analysis, and through conversion of 5a (and isomers) to 4a. 

as those derived from complexes la-d undergo smooth cycli­
zation. 

For example, complex lb8 was prepared in 62% yield by 
simply heating at reflux a solution of chromium hexacarbonyl 
(4 mole equiv) and 5-phenylvaleronitrile in dioxane under 
argon with a large diameter air condenser.9 The yellow solid 
complex has mp 41-43 0C, is easily handled in air, and is sol­
uble in most organic solvents. Addition of a solution of complex 
lb in tetrahydrofuran (THF) to a solution of lithio-2,2,6,6-
tetramethylpiperidide" (LiTMP5I mole equiv) in THF at-78 
0C followed by stirring at 0 0C for 24 h afforded a yellow so­
lution of Tj^-cyclohexadienylchromium species. Oxidative 
quenching12 led to isolation13 of 1-cyanotetralin (4b) in 89% 
yield.814 When the yellow solution (before oxidation) was 
quenched by protonation,15 the product was a mixture of at 
least three olefin positional isomers (e.g., 5b) of 1-cyanohex-
ahydronapjithalene (100% yield). Treatment with dichlorod-
icyanoquinone (DDQ, 1 h, in benzene at 80 0C) produced 4b 
as the only product, isolated in 84% yield overall from lb. 
Based on the intermediacy of 7/5-(alkylcyclohexadienyl) 
complexes in intermolecular reactions,2 the fused (2b) and 
spirocyclic (3b) species were considered reasonable interme­
diates during reactions of lb. The products (4b, 5b) suggest 
that 2b is the exclusive intermediate. In the same way, the 
tertiary carbanion derived from Id8 (LiTMP, THF, 0 0C, 4 
h, oxidative quenching) produced 1-cyano-l-methyltetralin 
(4c)8J6 in 87% yield. 

(CH2 In 

Cr(CO), e' 
Cr(CO)3 

1 a: n=4,R= H 2 a: n «4 
b : n = 3 , R = H b: n = 3 
c: n = 2 ,R« H c: n • 2 
d : n = 3 , R = C H 3 

6Cr(CO), 

3 a: n «4 
b: n • 3 
c: n «2 

CN 

n « 4 , R « H 
n - 3 , R « H 
n = 3 , R » C H , 

S a 
b 

n «4 
n «3 

With the higher homologue la,8 the site of ring closure ap­
pears to depend on the time and temperature used for forma­
tion of the ?75-cyclohexadienylchromium intermediates. Using 
hexamethylphosphoric triamide (HMPA) mixed with THF 

(1:2, v:v) as the medium, treatment of la with 1 mole equiv of 
LiTMP for 0.5 h at —78 0C followed by oxidative quenching12 

produced the fused ring isomer 4a (79% yield) as the only 
monomeric product. However, longer reaction time and/or 
higher temperature gave lower yields of 4a and substantial 
amounts of high molecular weight products. With the alter­
native quenching procedure (acid15), high yields of monomeric 
products were observed under all conditions, consisting of 5a 
(and olefin positional isomers)'7 and the spirocycles 6 (mixture 
of two diastereoisomers).18 Table I indicates a smooth increase 
in the proportion of spirocycles 6 at longer reaction times. The 
simplest interpretation is formation of intermediate 2a as the 
kinetic product followed by slow equilibration, via 1,2-carbon 
shift, to the thermodynamically more favorable product, 3a.19 

Oxidative quenching requires rearomatization of the ??5-cy-
clohexadienylchromium intermediate which does not occur 
smoothly from 3a. 

With the lower homologue Ic,8 both the spirocyclic (i.e., 3c) 
and fused (i.e., 2c) intermediates appear to be unfavorable. 
Treatment of Ic with lithium diisopropylamide at 0 0C in THF 
followed by oxidative quenching12 gives a single product, iso­
lated in 84% yield after one recrystallization (mp 153-154.7 
0C). The product proved to be dimeric and has been tentatively 
assigned the structure 7, a [3.3]metacyclophane.8'20 Since this 
appears to be the first reported example of a carbocyclic 
[3.3]metacyclophane,21 a simple degradation was carried out 
via oxidative decyanation22 to the corresponding diketone 8 
(68% yield, mp 134-136 0C).8 '20 Then Bayer-Villegar oxi­
dation followed by hydrolysis and methylation (methyl ether 
and methyl ester) produced a single product, methyl m-(2-
methoxyethyl)benzoate, identified by comparison with a 
commercial sample. Acid quenching15 (instead of oxidation) 
led to a dihydroaromatic analogue (e.g , 9).8-20 The tetrahy-
drometacyclophane (9 or an olefin positional isomer) was re­
sistant to dehydrogenation, but treatment with DDQ (24 h, 
80 0C) eventually produced 7 (82% yield). 

X Y 

7 : X = H 1 Y = C N 9 
8 : X 1 Y = O 

Complex 10, bearing a methoxy substituent, was prepared 
in 46% yield (after column chromatography) in the usual way 
from 4-(3-methoxyphenyl)butyronitrile. Treatment with 
lithium diisopropylamide at 0 0C in THF for 4 h followed by 
oxidative quenching12 produced a mixture (90% yield) of two 
1-cyanomethoxytetralin isomers (11) in a 60:40 ratio. The 
positions of the methoxyl substituents were confirmed through 
oxidative decyanation22 to 7-methoxy-l-tetralone and 8-
methoxy-1-tetralone which were identified by comparison of 
GC retention times and ' H NMR and mass spectra with cor­
responding data from commercial samples of 5-, 6-, and 7-
methoxy-1-tetralones and 8-methoxytetralone from unam-

I Q ru 
Qr(COIj 

IO 

CN 

I a : R| • O M t 1 R 2 - H 

b: R| • H,R2"OM« 

CN 

CH3O, 

1Cr(CO)3 

13 
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biguous synthesis.23 The formation of l-cyano-7-methoxyte-
tralin (Ha) is most simply rationalized by a 1,2-alkyl shift in 
the spirocyclic intermediate 12 during oxidative quenching. 
The other isomer (lib) could arise from 1,2-cyanoalkyl mi­
gration in 12, or from direct oxidative quenching of the fused 
ring intermediate, 13. 

Studies are in progress to further define the scope of the 
intramolecular carbanion additions to ir-arene ligands and to 
understand the factors which influence ring size prefer­
ences.24 
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Geminal Acylation via Pinacol Rearrangement. Synthesis 
of Spiro[4.ji] Ring Systems 

Sir: 

In connection with syntheses of naturally occurring products 
with cyclopentenone1 and spiro[4.5]decane rings,2 considerable 
efforts have recently been directed to the construction of 
five-membered rings. In this respect, we focused our attention 
on 1,3-cyclopentanedione derivatives, for they are versatile 
precursors of fused ring systems,3 as well as those of various 
functionalized five-membered rings, e.g., cyclopentenone.1 

Pinacol rearrangement driven by the release of the ring strain 
of a four-membered ring4 was envisioned to provide a way to 
this end. Further, we expected that the rearrangement of the 
pinacol 1 may be controlled by the presence of an acyl group 
adjacent to the diol moiety to give the 1,3-cyclopentanedione 
2. The reaction proceeded, indeed, as depicted below. This 
two-step sequence represents a new annelation method as well 
as a geminal acylation5 approach to cyclopentanediones. 

> 

OHOH 

• 

Bis-silylated succinoin, 3,6 the starting material of pinacol 
1, was prepared by acyloin condensation of a succinate in the 
presence of chlorosilane. It seems expedient that a variety of 
the four-membered acyloin derivatives are available from the 
products of Stobbe condensation and Diels-Alder reaction of 
fumalates and maleates.6b 

Preparation of the pinacol was achieved either by Lewis 
acid-mediated aldol addition7 or by a fluoride catalyzed one,8 

in which the pinacol was isolated as a silylated form, 4.9 The 
reaction of 3 and benzaldehyde at -78 0C gave 4a (R = Ph), 
in 78% yield with TiCl4, and 4b (R = Ph), in 75% yield with 
tetrabutylammonium fluoride (TBAF).10 Treatment of the 
aldol adduct 4 with trifluoroacetic acid (TFA) at room tem­
perature afforded the cyclopentanedione 5 in high yield (Table 
I, entries 1 and 2). None of the isomeric products like 6 was 
isolated. 1,3-Cyclopentanedione thus prepared can be trans­
formed to 2,3-disubstituted cyclopentenone 7 by an established 
procedure.11 

RCHO 
S i M e 3 O O S i M e 3 

W 
M ^3 I 

R1O OSMe 3 

4 a: R'= H 
~ b: R-=SiMe3 

c: R^alkyl 

OH R 

R V V ° R 
0" 

§ 7 

R" 0 

0 H O ^ 

Since an acetal coordinates with Lewis acids more strongly 
than its parent carbonyl compound, and is often a primary 
product of the recent synthetic methods of carbonyl function,12 

it appeared to be a reaction partner of choice, rendering this 
annelation method more effective. In fact, the aldol reaction 
mediated by BF3-Et2O or TiCl4

13 proceeded nicely with ace-
tals. The reaction conditions are mild (-78 0C) and did not 
cause loss of the trimethylsilyl group of the adduct 4c.9 

Application of this annelation method to ketals provides a 
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